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Abstract

Treatment of the chiral tripod ligand (LMent,SC)-CpH(PNMent) with (Ph3P)3RuCl2 in ethanol afforded the two chiral-at-metal diaste-
reomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] (70% de) in which the cyclopentadienyl group and the P atom of
the ligand coordinated at the metal center. The (LMent,SC,RRu)-diastereomer was isolated by crystallization from ethanol–pentane and its
structure was established by X-ray crystallography. The (LMent,SC,RRu)-diastereomer epimerized in CDCl3 solution at 60 �C in a first-
order reaction with a half-life of 5.66 h. In alcoholic solution epimerization occurred at room temperature. Substitution of the chloride
ligand in (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] by nitriles NCR (R = Me, Ph, CH2Ph) in the presence of
NH4PF6 gave mixtures of the diastereomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)NCR]PF6. Treatment of
(LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] with piperidine or morpholine in the presence of NH4PF6 led to the
chiral-at-metal diastereomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)NH3]PF6 (6% de).
� 2006 Elsevier B.V. All rights reserved.

Keywords: Ruthenium; Chirality; Metal configuration; Half-sandwich complexes; Ammine complexes
1. Introduction

Due to the recent progress in asymmetric organometallic
catalysis, enantioselective synthesis has become one of the
most effective methods for the preparation of enantiomeri-
cally enriched compounds and alternative strategies in this
field are highly desired. In three-legged piano-stool com-
plexes of the type [(gn-Ar)M(LL 0)X] (LL 0 is a unsymmetri-
cal chelate ligand and X is a monodentate ligand) the metal
atom is a chiral center. These compounds have attracted
much study in terms of the stereochemistry of substitution
reactions at the chiral metal center [1–4]. In particular,
there are many chiral-at-metal ruthenium compounds
[(g5-Cp)Ru(LL 0)X] some of which can be used as catalysts
in organic transformations. As usually the epimerization at
the metal center is faster than the catalytic reaction, two
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diastereomeric catalysts participate in product formation.
Hence, it would be desirable to control the metal configu-
ration in such complexes during catalysis.

The tripod ligands CpH(PN) = rac-1 and CpH-
(PNMent) = (LMent,SC)-2 (see Scheme 1, top) have three dif-
ferent binding sites, a cyclopentadiene system (CpH), a
diphenylphosphanyl group (P), and a pyridine or 2-menth-
oxy-substituted pyridine ring (N and NMent) connected by
an asymmetric carbon atom. Separation of the CpH-
(PNMent)-diastereomers (LMent,SC) and (LMent,RC) by frac-
tional crystallization gave (LMent,SC)-2 resolved with
respect to the asymmetric carbon atom at the branching
position [5]. We reported the synthesis of the half-sandwich
rhodium complex (LMent,SC,RRh)-3 in which the ligand
coordinated with Cp, P and N to the metal atom (see
Scheme 1, bottom). The (SC)-configuration of the tripod
ligand (LMent,SC)-2 enforced (RRh)-configuration at the
metal center and inhibited any configuration change at
the metal atom including substitution reactions of the Cl

mailto:t5tuno@cit.nihon-u.ac.jp


P H
Rh

N
O

Cl
Ph2

Cl P H
Rh

N
O

Cl

Ph3P

Ph2
PF6

H

Ph2P

N

O

H

Ph2P

N

(LMent,SC)-2

(LMent,SC,RRh)-3

rac-1

(LMent,SC,SRh)-4

Scheme 1.

Ru
P

N

O

Ph3P

Cl

H Ru
P

N

O

Cl

Ph3P

H

Ru
P

N

O

Ph3P
H

X

Ru
P

N

O

Ph3P

H
X

Ph2 Ph2

Ph2Ph2 PF6PF6

(LMent,SC)-2 + (Ph3P)3RuCl2

EtOH/reflux

+

(LMent,SC,RRu)-5 (LMent,SC,SRu)-5

RCN, NH4PF6/r.t.

+

(LMent,SC,RRu)-6 : X = NCMe

(LMent,SC,RRu)-7 : X = NCPh

(LMent,SC,RRu)-8 : X = NCCH2Ph

(LMent,SC,SRu)-6 : X = NCMe

(LMent,SC,SRu)-7 : X = NCPh

(LMent,SC,SRu)-8 : X = NCCH2Ph

Scheme 2.

2740 T. Tsuno et al. / Journal of Organometallic Chemistry 691 (2006) 2739–2747
ligand by other halogen and pseudohalogen ligands [5,6].
However, the attempt to replace the Cl ligand by PPh3

resulted in a decoordination of the pyridine part of the
ligand which in the product (LMent,SC,SRh)-4 was only
bound to the metal atom by Cp and P (see Scheme 1, bot-
tom). Here we wish to report the synthesis of chiral-at-
metal ruthenium complexes with the tripod ligand
(LMent,SC)-2 resolved at the branching asymmetric carbon
atom.

2. Results and discussion

The chiral tripod ligand CpH(PNMent), designated
(LMent,SC)-2, was prepared according to the published
method [5]. The reaction of (LMent,SC)-2 with
(Ph3P)3RuCl2 in ethanol afforded orange crystals in 54%
yield. The 1H NMR spectrum of a solution of the crystals
in CDCl3 showed two sets of signals (see in Fig. 4) which
we assigned to the two diastereomers (LMent,SC,RRu)-
and (LMent,SC,SRu)-5 differing only in the Ru-configuration
(see Scheme 2, upper part). This assignment was corrobo-
rated by the appearance of two signals in the 31P{1H}
NMR spectrum for a coordinated PPh3 ligand at 42.8 (d,
2JP�P = 35.1 Hz) and 43.6 ppm (d, 2JP�P = 35.1 Hz) and
the coordinated PPh2 group of the tripod ligand at 75.0
(d, 2JP�P = 35.1 Hz) and 62.8 ppm (d, 2JP�P = 35.1 Hz),
respectively (ratio 85:15). In boiling benzene the reaction
of (LMent,SC)-2 with (Ph3P)3RuCl2 gave the two diastereo-
mers also in the ratio 85:15.

In the reaction of (LMent,SC)-2 with (Ph3P)3RuCl2 the
cyclopentadiene system of the tripod was transformed into
the p-bonded cyclopentadienyl ligand occupying three
coordination sites at the Ru atom in (LMent,SC,RRu)- and
(LMent,SC,SRu)-5. According to the 31P{1H} NMR spec-
trum another two coordination sites in the half-sandwich
complexes were occupied by P atoms. The sixth coordina-
tion position, however, was crucial. The ligand for this
coordination site could have been the relatively nucleo-
philic chloride giving the neutral complex [Cp(PNMent)-
Ru(PPh3)Cl] 5 (similar to 4) or the pyridine arm of the
tripod ligand giving the ionic complex [Cp(PNMent)-
Ru(PPh3)]Cl (similar to 3). A decision was possible on
the basis of the mass spectra. The ESI-MS spectrum in
dichloromethane-acetonitrile showed peaks at m/z 900 for
[Cp(PNMent)Ru(PPh3)]+ and at m/z 941 for [Cp(PNMent)-
Ru(PPh3)NCMe]+ (Fig. 1(a)). These ions do not contain
chlorine. However, when the solvent was changed to
dichloromethane only, a peak at 935 for [Cp(PNMent)-
Ru(PPh3)Cl]+ was observed (Fig. 1(b)) indicating that
complexes (LMent,SC,RRu)- and (LMent,SC,SRu)-5 do con-
tain a coordinated chloride ligand at the metal center. In
a previous paper we had reported that the reaction of
rac-1 with (Ph3P)3RuCl2 had given an ionic complex
[Cp(PN)Ru(PPh3)]Cl with the tripod ligand binding by
Cp, P and N [7]. As in the FD mass spectrum in CH2Cl2
a peak at m/z 781 had been present this complex must be
reformulated as the neutral complex [Cp(PN)Ru(PPh3)Cl]



Fig. 1. ESI-MS spectra of 5: (a) in CH2Cl2–MeCN, (b) in CH2Cl2.
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with a coordinated chloride ligand and the tripod ligand
binding by Cp and P only similar to complexes 5 of the
present study.

Fortunately, slow diffusion of pentane into an ethanol
or CH2Cl2 solution of the diastereomers afforded single
crystals of the main diastereomer of 5 which an X-ray anal-
ysis proved to have (LMent,SC,RRu)-configuration (see
Fig. 2) [8]. The X-ray analysis corroborated the presence
of the coordinated chloride ligand and the binding of the
tripod ligand by Cp and P only.
Fig. 2. Molecular structure of (LMent,SC,RRu)-5. Hydrogen atoms are
omitted for clarity. Selected bond lengths (Å), angles and torsion angles
(�): Ru1–Cl1 2.4626(8), Ru1–P1 2.3219(7), Ru1–P2 2.3056(6), Ru1–C1
2.170(3), Ru1–C2 2.210(3), Ru1–C3 2.230(3), Ru1–C4 2.227(3), Ru1–C5
2.167(3); Cl1–Ru1–P1 91.85(3), Cl1–Ru1–P2 97.17(2), P1–Ru1–P2 100.87
(2), Ru1–P2–C9 101.08(8); Cl1–Ru1–P2–C(9) �159.90(8), P1–Ru1–P2–C9
106.81(8), Ru1–P2–C9–C6 42.66(18), Ru1–P2–C9–C10 179.20(19).
In the CD spectrum of (LMent,SC,RRu)-5 a positive Cot-
ton effect was observed at 286 nm in CH2Cl2 (see Fig. 3,
solid line) which has the same intensity but opposite sign
compared to (LMent,SC,SRh)-4 probably due to the oppo-
site metal configurations [6].

(LMent,SC,RRu)-5 was configurationally stable in the
solid state. In solution, however, epimerization occurred.
When the equilibration of (LMent,SC,RRu)-5 (1.02 ·
10�2 mol L�1) with respect to the Ru-configuration to give
the 85:15-mixture of (LMent,SC,RRu)- and (LMent,SC,SRu)-5
was monitored by 1H NMR in CDCl3 at 60 �C, a rate con-
stant k was calculated as 3.4 · 10�5 s�1 [half-life s = 5.66 h]
(see Fig. 4). The cyclopentadienyl proton at ca. 3 ppm and
the methine proton on the chiral carbon atom of
(LMent,SC,RRu)-5 were observed as broad peaks (see
Fig. 4, bottom). Surprisingly, although both proton signals
shifted to lower magnetic field during isomerization to
(LMent,SC,SRu)-5, the signals of these protons appeared as
sharp peaks shifted to higher magnetic field with the
methine proton resolved as a doublet (2JP–H = 10.1 Hz)
after 2 weeks at room temperature (see Fig. 4, top). In
the 31P{1H} NMR spectra a signal change of broad
doublets to sharp doublets was also observed. Further-
more, when CD3OD was added to a solution of
(LMent,SC,RRu)-5 in CDCl3 at room temperature, the ratio
of (LMent,SC,RRu)- and (LMent,SC,SRu)-5 immediately
reached the equilibrium state of 85:15.

The configurational lability of (LMent,SC,RRu)-5 found
in the present study contrasts with the configurational
stability of (RC,RRu)- and (RC,SRu)-[CpRu(Prophos)Cl],
Prophos = (R)-1,2-bis(diphenylphosphanyl)propane [9,10].
Both compounds have the same coordination frame Cp,
P, P 0, Cl with the chelate bridge in our complex between
Cp and P and in the Prophos complex between P and P 0.
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Fig. 3. CD spectra of (LMent,SC,RRu)-5 (——) and a mixture (88:12) of
(LMent,SC,RRu)- and (LMent,SC,SRu)-6 (� � � � � �) in CH2Cl2.



Fig. 4. Time resolved 1H NMR spectra of isomerization of (LMent,SC,RRu)-5 to (LMent,SC,SRu)-5 at 60 �C in CDCl3.
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Whereas in our case the diastereomer ratio in the synthesis
both in ethanol and in benzene was under thermodynamic
control (see above), Consiglio et al. assigned the diastereo-
mer ratio of 60:40 in their synthesis in refluxing benzene to
kinetic control [9]. They state that their complex did not
show epimerization in toluene at 80 �C for 96 h, but they
claim epimerization in C6D5Cl at 80 �C. Furthermore,
Consiglio et al. used their Prophos complex in methanol
solution as the starting material for substitution reactions,
which overwhelmingly occurred with retention of configu-
ration at the Ru atom [11,12]. In contrast, our compound
(LMent,SC,RRu)-5 epimerized readily in alcoholic solution
at room temperature probably due to the ancillary effect
of the dangling pyridine ligand. An alternative explanation
of the higher configurational stability of Consiglio’s Pro-
phos complex (RC,SRu)-[CpRu(Prophos)Cl] could be the
small chelate angle P–Ru–P 0 of 82.9� resisting widening
necessary in any transition state for a change of the Ru
configuration. The P1–Ru–P2 angle in (LMent,SC,RRu)-5
is 100.87�. Conversely, in (LMent,SC,RRu)-5 the Cp–Ru–
P2 (Cp = ring centroid) angle to the tethered PPh2 group
and the Cp–Ru–P1 angle to the PPh3 ligand are 113.16�
and 117.90�, respectively. These angles are smaller than
the Cp–Ru–P and Cp–Ru–P 0 angles in the Prophos com-
plex (129.5� and 131.3�) [9].

The reaction of the racemic tripod CpH(PN) rac-1 lack-
ing the 2-menthoxy substituent with (Ph3P)3RuCl2 in the
presence of NH4PF6 had given the complex [Cp(PN)Ru-
(PPh3)]PF6 in which the tripod was bonded by Cp, P and
N [7]. We tried to synthesize the same type of complex with
the resolved tripod CpH(PNMent) (LMent,SC)-2. However,
the reaction of the diastereomers (LMent,SC,RRu)- and
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(LMent,SC,SRu)-5 with NH4PF6 in CH2Cl2 afforded yellow-
black powders the 1H NMR spectra of which showed only
broad signals. Obviously, the NMent part of the tripod can-
not coordinate at the metal center due to steric repulsion
between the bulky 2-menthoxy moiety and the triphenyl-
phosphane ligand.

Next, the reaction of diastereomerically pure
(LMent,SC,RRu)-5 and NH4PF6 in the presence of acetonitrile
was investigated giving mixtures of the diastereomers
(LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru-
(PPh3)NCMe]PF6 6 in 91% yield (76% de) (see Scheme 2).
The CD spectrum of the mixture of (LMent,SC,RRu)- and
(LMent,SC,SRu)-6 is shown in Fig. 3 (dotted line). It has been
reported that both (SC,RRu)- and (SC,SRu)-[CpRu(Pro-
phos)NCMe]PF6 were stereospecifically obtained by substi-
tution of the corresponding diastereomers (SC,RRu)- and
(SC,SRu)-[CpRu(Prophos)Cl] with acetonitrile in the pres-
ence of NH4PF6 [11,12]. However, in our case complex 6

was isolated as a mixture of diastereomers. When benzonit-
rile and phenylacetonitrile were used as monodentate
ligands and reacted with the mixture of the diastereomers
(LMent,SC,RRu)- and (LMent,SC,SRu)-5 and NH4PF6, a mix-
ture of the diastereomers of (LMent,SC,RRu)- and
(LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)NCR]PF6 7 (R = Ph)
and 8 (R = CH2Ph) was obtained. The diastereomeric excess
decreased in the order 6 (76% de) > 7 (56% de) > 8 (44% de).
In the ESI-MS spectra of these nitrile complexes a cation
peak containing the corresponding coordinated nitrile was
observed, when dichloromethane was used as the solvent.
Small amounts of single crystals of 8 were obtained by
recrystallization from CH2Cl2-ether. The X-ray analysis
proved the (LMent,SC,RRu)-configuration (see Fig. 5) [13].
There is a strong resemblance between the structures of
(LMent,SC,RRu)-5 and (LMent,SC,RRu)-8. As shown in
Fig. 5, the phenyl group of phenylacetonitrile bends towards
the ruthenium center minimizing space filling.
Fig. 5. Molecular structure of (LMent,SC,RRu)-8. Hydrogen atoms are
omitted for clarity. Selected bond lengths (Å), angles and torsion angles
(�): Ru1–N2 2.018(5), Ru1–P1 2.305(2), Ru1–P2 2.330(2), Ru1–C1
2.230(7), Ru1–C2 2.270(6), Ru1–C3 2.233(5), Ru1–C4 2.191(5), Ru1–C5
2.180(6); N2–Ru1–P1 93.7(2), N2–Ru1–P2 91.5(1), P1–Ru1–P2 102.00 (6),
Ru1–P2–C9 102.02(2); N2–Ru1–P2–C(9) �159.4(2), P1–Ru1–P2–C9
106.5(2), Ru1–P2–C9–C6 42.1(4), Ru1–P2–C9–C10 179.2(4).
Using amines such as piperidine and morpholine as
monodentate ligands we expected a stereospecific substitu-
tion of the chloride ligand in (LMent,SC,RRu)-5 due to the
formation of a hydrogen bond between the incoming
amines and the nitrogen of the dangling pyridine. How-
ever, both reactions of (LMent,SC,RRu)-5 with piperidine
and morpholine, respectively, and NH4PF6 gave a mixture
of diastereomers of the same compound (54% yield for
piperidine; 63% for morpholine). The IR spectra showed
N–H bands at 3356 and 3282 cm�1 [14]. In the ESI-MS
spectrum in dichloromethane a cation of m/z 917 was
observed which corresponded to [Cp(PNMent)Ru(PPh3)-
NH3]+. This suggests that the product was (LMent,SC,RRu)-
and (LMent,SC,SRu)-9 with ammonia coordinated to the
ruthenium center corroborated by the data of the elemental
analysis (see Scheme 3). It has been reported that an
ammine–ruthenium(II) complex [CpRu(PPh3)2NH3]PF6

was prepared by the reaction of [CpRu(PPh3)2Cl] with
NH4PF6 in the presence of thallium(I) carbonate in meth-
anol [14]. In this reaction, the thallium(I) cation scavenged
the chloride anion and the carbonate ion removed a proton
from the ammonium ion. The ammonia formed coordi-
nated to the metal center. Similarly, in our case the amines
piperidine and morpholine abstracted a proton from the
ammonium ion of the additive NH4PF6 and the resulting
ammonia replaced the chloride ligand in (LMent,SC,RRu)-
and (LMent,SC,SRu)-5 to give (LMent,SC,RRu)- and
(LMent,SC,SRu)-9. The ratio of the diastereomers of 9 was
determined to be 57:43 by 31P{1H} NMR analysis (6% de).

3. Experimental

3.1. General

All manipulations and reactions were carried out under
an inert atmosphere of dry nitrogen or dry argon using
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standard Schlenk techniques. Solvents were dried by stan-
dard methods and distilled prior to use. Melting points:
Büchi SMP 20 or Yazawa micro hot stage (uncorrected).
Mass spectra: Thermoquest Finnigan TSQ 7000. 1H and
31P{1H} NMR: Bruker Avance-400 spectrometer (TMS
as an internal standard for 1H, H3PO4 as an external
standard for 31P). CD spectra: JASCO J-710 spectropho-
tometer. IR spectra: Beckman IR 4240 or BIO-RAD
FTS 60A spectrometer. X-ray structure analysis: STOE-
IPDS (Mo-Ka radiation, 173 K, k = 0.71073 Å, Oxford
cryosystems cooler, graphite monochromator) or Rigaku
RAXIS-RAPID (Cu-Ka radiation, 296 K, k = 1.5419 Å)
diffractometers. (LMent,SC)-2,2-cyclopentadienyl-1-diphe-
nylphosphanyl-2-methylprop-1-yl-6-[(1R,2S,5R)-menthoxy]-
pyridine (LMent,SC)-2 was prepared as published [6].
(Ph3P)3RuCl2 was commercially available.

3.1.1. (LMent,SC,RRu)/(LMent,SC,SRu)-[Chloro{2-(2-

cyclopentadienyl-1-diphenylphosphanyl-2-methylprop-1-yl)-

6-[(1R,2S,5R)-menthoxy]pyridine}triphenylphosphane]-

ruthenium(II) (LMent,SC,RRu)-5 and (LMent,SC,SRu)-5
To a suspension of (Ph3P)3RuCl2 (1.22 g, 1.27 mmol) in

absolute ethanol (70 mL) was added a solution of
(LMent,SC)-2 (754 mg, 1.32 mmol) in CH2Cl2 (10 mL) at
room temperature. The mixture was refluxed for 3 h and
then cooled to room temperature. After evaporation of
the solvent, the residue was chromatographed on silica
gel using 25% EtOAc–petroleum ether (40/60) as an eluent
to give a crude diastereomer mixture of (LMent,SC,RRu)-
and (LMent,SC,SRu)-5. Crystallization from CH2Cl2-pen-
tane afforded (LMent,SC,RRu)- and (LMent,SC,SRu)-5 in
54% yield (651 mg) as orange crystals. Diastereomerically
pure (LMent,SC,RRu)-5 was obtained by slow recrystalliza-
tion from CH2Cl2–pentane or ethanol–pentane at room
temperature. Mp. 158–159 �C. 1H NMR (400 MHz,
CD2Cl2, 300 K, signals of the (LMent,SC,SRu)-isomer given
in brackets if distinguishable): d = 7.83 (t, 3J = 8.5 Hz, 2H,
Ph), [7.41 (t, 3J = 7.2 Hz, 2H, Ph)], 7.60–6.80 (m, 21H, Ph),
[7.72–6.80 (m, 21H, Ph)], 6.88 (t, 3J = 7.6 Hz, 1H, Py–H4),
6.64 (t, 3J = 7.6 Hz, 2H, Ph), [6.79 (t, 3J = 7.4 Hz, 1H, Py–
H4)], 6.43 (d, 3J = 7.6 Hz, 1H, Py–H3/5), [6.41 (d,
3J = 7.5 Hz, 1H, Py–H3/5)], 5.66 (d,3J = 7.6 Hz, 1H, Py–
H3/5), [5.45 (d, 3J = 7.5 Hz, 1H, Py–H3/5)], 5.26 (s, 1H,
Cp–H), [5.19 (s, 1H, Cp–H)], 5.10 (dt, 3J = 4.3 Hz,
3J = 10.7 Hz, 1H, OCH), [4.96 (dt, 3J = 4.3 Hz,
3J = 10.7 Hz, 1H, OCH)], 4.86 (s, 1H, Cp–H), [5.09 (s,
1H, Cp–H)], 4.59 (d, 2JP–H = 10.2 Hz, 1H, PPh2CHPy),
[4.92 (d, 2JP–H = 11.0 Hz, 1H, PPh2CHPy)], 4.58 (s, 1H,
Cp–H), 3.06 (s, 1H, Cp–H), [3.77 (s, 1H, Cp–H)], 2.35
(br d, J = 11.0 Hz, 1H, Ment), 2.07–1.98 (m, 1H, Ment),
1.87–1.50 (m, 6H, Ment), 1.28 (s, 3H, CH3), [1.18 (s, 3H,
CH3)], 1.17–1.10 (m, 1H, Ment), 1.07 (d, 3J = 6.7 Hz,
3H, CH3), [0.93 (d, 3H, 3J = 6.5 Hz, 3H, CH3)], 1.01 (s,
3H, CH3), [1.07 (s, 3H, CH3)], 0.90 (d, 3J = 7.0 Hz, 3H,
CH3), [0.99 (d, 3J = 7.0 Hz, 3H, CH3)], 0.73 (d,
3J = 7.0 Hz, 3H, CH3), [0.72 (d, 3J = 7.0 Hz, 3H, CH3)]
ppm.13C{1H} NMR (100 MHz, CDCl3, 300 K, signals of
the (LMent,SC,SRu)-isomer given in brackets if distinguish-
able): 162.12 (s, Py–C2), 153.84 (d, JC–P = 6.9 Hz, P–Ar–
C), 138.32 (d, JC–P = 12.2 Hz, P–Ar–CH), 137.34 (s,
Py–CH), [137.43 (s, Py–CH)], 135.11–126.53 (m, Ar–C,
Ar–CH, Py–CH, Py–C), 119.63 (s, Py–CH), 109.32 (s,
Py–CH), [109.45 (s, Py–CH)], 86.32 (s, JC–P = 4.6 Hz,
Cp), 80.43 (br d, JC–P = 9.9 Hz, Cp), 79.14 (br d, JC–P =
11 Hz, Cp), 76.2 (s, Cp), 74.84 (d, JC–P = 19.8 Hz, P–
CH), 73.96 (s, Ment–CH), [74.14 (s, Ment–CH)], 60.00 (s,
Cp), 47.63 (s, Ment–CH), 41.15 (s, Ment–CH2), [40.87 (s,
Ment–CH2)], 38.19 (d, 2JC–P = 7.6 Hz, CpCMe2), [37.86
(d, 2JC–P = 6.1 Hz, CpCMe2)], 34.63 (s, Ment–CH2),
31.87 (s, Ment–CH), [31.45 (s, Ment–CH)], 30.04 (d,
3JC–P = 17.5 Hz, CpCMe2), 29.71 (s, CpCMe2), 26.37 (s,
Ment–CH), 23.96 (s, Ment–CH2), 23.12 (s, Ment–CH),
22.45 (s, Ment–Me), [22.18 (s, Ment–Me)], 20.72 (s,
Ment–Me), [20.80 (s, Ment–Me)], 16.77 (s, Ment–Me),
[16.97 (s, Ment–Me)] ppm. 31P{1H} NMR (162 MHz,
CDCl3): (LMent,SC,RRu)-5: d = 42.8 (d, 2JP–P = 35.1 Hz,
1P), 62.8 (d, 2JP–P = 35.1 Hz, 1P) ppm; (LMent,SC,SRu)-5:
d = 43.6 (d, 2JP–P = 35.1 Hz, 1P), 75.0 (d, 2JP–P =
35.1 Hz, 1P) ppm. MS spectra were shown in Fig. 1.
C54H58ClNOP2Ru Æ (CH2Cl2)1/2 (978.0): Calc. C, 66.93;
H, 6.08; N, 1.43. Found: C, 66.60; H, 6.34; N, 1.31%.

3.1.2. (LMent,SC,RRu)/(LMent,SC,SRu)-Æ[Acetonitrile{2-(2-

cyclopentadienyl-1-diphenylphosphanyl-2-methylprop-1-yl)-

6-[(1R,2S,5R)-menthoxy]pyridine}-

triphenylphosphane]ruthenium(II)æ-hexafluorophosphate

(LMent,SC,RRu)-6 and (LMent,SC,SRu)-6
To a solution of (LMent,SC,RRu)- and (LMent,SC,SRu)-5

(156 mg, 0.167 mmol, ratio 85:15) in a mixture of acetoni-
trile (5 mL) and CHCl3 (15 mL) was added NH4PF6

(67 mg). The mixture was stirred for 18 h at room temper-
ature and then evaporated in vacuo. The residue was
washed with CHCl3 and the filtrate was evaporated to give
(LMent,SC,RRu)- and (LMent,SC,SRu)-6 in 91% yield
(158 mg) as light yellow crystals. Mp. 159–163 �C. IR
(KBr): m = 2245 (CN) cm�1. 1H NMR (400 MHz, CDCl3,
300 K, signals of the (LMent,SC,SRu)-isomer given in brack-
ets if distinguishable): d = 7.90–6.90 (m, 24H, Ph, Py-H4),
6.71 (t, 3J = 7.6 Hz, 2H, Ph), [6.82 (t, 3J = 7.1 Hz, 2H,
Ph)], 6.44 (d, 3J = 8.3 Hz, 1H, Py–H3/5), [6.45 (d,
3J = 8.1 Hz, 1H, Py–H3/5)], 5.67 (s, 1H, Cp–H), [5.75 (s,
1H, Cp–H)], 5.44 (d, 3J = 7.6 Hz, 1H, Py–H3/5), [5.90 (br
s, 1H, Py–H3/5)], 5.21 (d, 4JP–H = 1.4 Hz, 1H, Cp–H),
[5.53 (s, 1H, Cp–H)], 4.92 (m, 1H, OCH), 4.76 (s, 1H,
Cp–H), [4.62 (s, 1H, Cp–H)], 4.44 (d, 2JP–H = 11.2 Hz,
1H, PCHPy), [4.91 (d, 2JP–H = 10.8 Hz, 1H, PCHPy)],
4.01 (s, 1H, Cp–H), [4.10 (s, 1H, Cp–H)], 2.16 (br d,
3J = 11.4 Hz, 1H, Ment–H), 2.07–2.01 (m, 1H, Ment–H),
2.00 (s, 3H, CH3CN), 1.83–1.50 (m, 4H, Ment–H), 1.52
(s, 3H, CH3), [1.36 (s, 3H, CH3)], 1.30–0.95 (m, 3H,
Ment–H), 1.15 (s, 3H, CH3), [1.23 (s, 3H, CH3)], 1.02 (d,
3J = 6.6 Hz, 3H, CH3), [1.16 (d, 3J = 7.0 Hz, 3H, CH3)],
0.91 (d, 3J = 7.0 Hz, 3H, CH3), [0.87 (d, 3J = 7.0 Hz, 3H,
CH3)], 0.75 (d, 3J = 7.0 Hz, 3H, CH3), [0.65 (d,



T. Tsuno et al. / Journal of Organometallic Chemistry 691 (2006) 2739–2747 2745
3J = 6.9 Hz, 3H, CH3)] ppm. 13C{1H} NMR (100 MHz,
CDCl3, 300 K, signals of the (LMent,SC,SRu)-isomer given
in brackets if distinguishable): 162.32 (s, Py–C2), [162.36
(s, Py–C2)], 152.84 (d, JC–P = 8.2 Hz, P–Ar–C), [153.20,
br d, JC–P = 10.0 Hz, P–Ar–C], 137.90 (s, Py–CH),
[137.90 (s, Py–CH)], 135.36 (d, JC–P = 11.4 Hz, P–Ar–
CH), [136.68 (d, JC–P = 11.4 Hz, P–Ar–CH)], 135.50 (d,
JC–P = 38.1 Hz, P–Ar–C), 133.13 (d, JC–P = 10.7 Hz, P–
Ar–CH), 132.60 (d, JC–P = 7.6 Hz, P–Ar–CH), [132.50 (d,
JC–P = 9.9 Hz, P–Ar–CH)], 132.52–122.05 (m, P–Ar–C,
P–Ar–CH, Py–C, Py–CH, CN), 118.60 (s, Py–CH),
[119.14 (s, Py–CH)], 110.01 (s, Py–CH), [110.10 (s, Py–
CH)], 90.30 (s, Cp), [88.32 (d, JC–P = 5.1 Hz, Cp)], 81.70
(d, JC–P = 5.1 Hz, Cp), [83.85 (d, JC–P = 5.1 Hz, Cp)],
78.53 (d, JC–P = 8.7 Hz, Cp–CH), [70.25 (d, JC–P =
9.2 Hz, Cp)], 75.95 (d, JC–P = 19.7 Hz, P–CH), [73.61 (d,
JC–P = 21.3 Hz, P–CH)], 74.73 (s, Ment–CH), [74.16 (br
s, Ment–CH)], 61.50 (s, Cp), [65.87 (br s, Cp)], 47.50 (s,
Ment–CH), [47.50 (s, Ment–CH)], 40.90 (s, Ment–CH2),
[40.73 (s, Ment–CH2)], 38.40 (d, 2JC–P = 8.0 Hz, CpCMe2),
[38.22 (d, 2JC–P = 6.7 Hz, CpCMe2)], 34.51 (s, Ment–CH2),
[34.44 (s, Ment–CH2)], 31.63 (s, Ment–CH), [31.20 (s,
Ment–CH)], 29.28 (d, 3JC–P = 19.1 Hz, CpCMe2), [29.48
(d, 3JC–P = 19.4 Hz, CpCMe2)], 29.22 (s, CpCMe2), [29.22
(s, CpCMe2)], 26.31 (s, Ment–CH), [26.40 (s, Ment–CH)],
24.01 (s, Ment–CH2), [23.77 (s, Ment–CH2)], 23.20 (s,
Ment–CH), [21.90 (s, Ment–CH)], 22.29 (s, Ment–Me),
[22.18 (s, Ment–Me)], 20.70 (s, Ment–Me), [20.91 (s,
Ment–Me)], 16.95 (s, Ment–Me), [17.13 (s, Ment–Me)],
2.55 (s, CH3CN), [3.96 (s, CH3CN)] ppm. 31P{1H}
NMR (162 MHz, CDCl3): (LMent,SC,RRu)-6: d = 48.2 (d,
2JP–P = 30.9 Hz, 1P), 70.5 (d, 2JP–P = 30.9 Hz, 1P),
�143.5 (septet, 1JP–F = 712.3 Hz, 1P) ppm; (LMent,SC,
SRu)-6: d = 48.2 [overlapping with (LMent,SC,RRu)-6
signal], 77.4 (br d, 2JP–P = 24.4 Hz, 1P), �143.5 (septet,
1JP–F = 712.3 Hz, 1P) ppm. ESI-MS (CH2Cl2, rel. int.) m/
z = 941 (M, 18), 900 (M�MeCN, 100). C56H61F6N2OP3Ru
(1086.1): Calc. C, 61.93; H, 5.66; N, 2.58. Found: C, 61.85;
H, 5.85; N, 2.58%.

3.1.3. (LMent,SC,RRu)/(LMent,SC,SRu)-Æ[Benzonitrile{2-(2-

cyclopentadienyl-1-diphenylphosphanyl-2-methylprop-1-yl)-

6-[(1R,2S,5R)-menthoxy]pyridine}-triphenyl-

phosphane]ruthenium(II)æ-hexafluorophosphate

(LMent,SC,RRu)-7 and (LMent,SC,SRu)-7
Procedure as for 6. Yield 49%. Mp. 156 �C. IR (KBr):

m = 2229 (CN) cm�1. 1H NMR (400 MHz, CDCl3, 273 K,
signals of the (LMent,SC,SRu)-isomer given in brackets if
distinguishable): d = 7.69–6.90 (m, 28H, Ph, Py–H4), 6.71
(t, 3J = 6.7 Hz, 2H, Ph), [6.81 (t, 3J = 7.0 Hz, 2H, Ph)],
6.46 (d, 3J = 8.4 Hz, 1H, Py–H3/5), [6.52 (d, 3J = 7.3 Hz,
1H, Py–H3/5)], 5.80 (s, 1H, Cp–H), [5.80 (s, 1H, Cp–H)],
5.90 (d, 3J = 7.4 Hz, 1H, Py–H3/5), [6.08 (br s, 1H, Py–
H3/5)], 5.30 (s, 1H, Cp–H), [5.30 (s, 1H, Cp–H)], 4.89 (dt,
3J = 4.2 Hz, 3J = 11.0 Hz, 1H, OCH), 4.85 (s, 1H, Cp–
H), [4.72 (s, 1H, Cp–H)], 4.58 (d, 2JP–H = 11.1 Hz, 1H,
PyCHPPh2), [4.98 (d, 2JP–H = 11.5 Hz, 1H, PyCHPPh2)],
4.14 (s, 1H, Cp–H), [4.14 (s, 1H, Cp–H)], 2.20–0.70 (m,
9H, Ment–H), 1.15 (s, 3H, CH3), [1.29 (s, 3H, CH3)],
1.18 (s, 3H, CH3), [1.03 (s, 3H, CH3)], 1.02 (d,
3J = 6.4 Hz, 3H, CH3), 0.91 (d, 3J = 6.9 Hz, 3H, CH3),
[0.88 (d, 3J = 7.1 Hz, 3H, CH3)], 0.74 (d, 3J = 6.8 Hz,
3H, CH3), [0.62 (d, 3J = 7.1 Hz, 3H, CH3)] ppm. 13C{1H}
NMR (100 MHz, CDCl3, 300 K, signals of the
(LMent,SC,SRu)-isomer given in brackets if distinguishable):
162.31 (s, Py–C), [162.69 (s, Py–C)], 152.67 (d, JC–P =
7.6 Hz, P–Ar–C), 137.91 (s, Py–CH), [138.06 (s, Py–CH)],
136.73–123.36 (m, Ar–C, Ar–CH, Py–CH, Py–C, CN),
119.29 (s, Py–CH), [118.78 (s, Py–CH)], 110.06 (s, Py–
CH), 91.30 (d, JC–P = 3.1 Hz, Cp), [88.76 (d, JC–P

= 6.1 Hz, Cp)], 81.35 (d, JC–P = 2.9 Hz, Cp), [84.03 (d,
JC–P = 3.1 Hz, Cp)], 79.28 (d, JC–P = 5.1 Hz, Cp), [70.99
(d, JC–P = 5.1 Hz, Cp)], 75.40 (d, JC–P = 19.8 Hz, P–CH),
[73.66 (d, JC–P = 25.2 Hz, P–CH)], 74.65 (s, Ment–CH),
[74.33 (s, Ment–CH)], 62.77 (s, Cp), [67.04 (br s, Cp)],
47.52 (s, Ment–CH), [47.47 (s, Ment–CH)], 40.90 (s,
Ment–CH2), [40.65 (s, Ment–CH2)], 38.29 (d, 2JC–P =
6.9 Hz, CpCMe2), [38.44 (d, 2JC–P = 7.6 Hz, CpCMe2)],
34.53 (s, Ment–CH2), [34.44 (s, Ment–CH2)], 31.64 (s,
Ment–CH), [31.17 (s, Ment–CH)], 29.32 (d, 3JC–P =
19.1 Hz, CpCMe2), 26.39 (s, Ment–CH), [26.29 (s, Ment–
CH)], 23.98 (s, Ment–CH2), [23.82 (s, Ment–CH2)], 23.06
(s, Ment–CH), [21.92 (s, Ment–CH)], 22.32 (s, Ment–Me),
[22.13 (s, Ment–Me)], 20.73 (s, Ment–Me), [21.00 (s,
Ment–Me)], 16.96 (s, Ment–Me), [17.26 (s, Ment–Me)]
ppm. 31P{1H} NMR (162 MHz, CDCl3, 273 K):
(LMent,SC,RRu)-7: d = 69.9 (br s, 1P), 48.3 (d, 2JP–P =
31.7 Hz, 1P), �142.9 (septet, 1JP–F = 717.4 Hz, 1P) ppm;
(LMent,SC,SRu)-7: d = 78.1 (br s, 1P), 49.5 (br s, 1P),
�142.9 (septet, 1JP–F = 717.4 Hz, 1P) ppm. ESI-MS
(CH2Cl2, rel. int.): m/z = 1003 (M, 4), 900 (M–PhCN,
100). C61H63F6N2OP3Ru (1148.2): Calc. C, 63.81; H,
5.53; N, 2.44. Found: C, 63.66; H, 5.98; N, 2.62%.

3.1.4. (LMent,SC,RRu)/(LMent,SC, SRu)-Æ[Phenylacetonitrile-
{2-(2-cyclopentadienyl-1-diphenylphosphanyl-2-methylprop-

1-yl)-6-[(1R,2S,5R)-menthoxy]pyridine}-

triphenylphosphane]ruthenium(II)æ-hexafluorophosphate

(LMent,SC,RRu)-8 and (LMent,SC,SRu)-8
Procedure as for 6. Yield 71%. Mp. 141 �C. IR (KBr):

m = 2265 (CN) cm�1. 1H NMR (400 MHz, CDCl3, 300 K,
signals of the (LMent,SC,SRu)-isomer given in brackets if dis-
tinguishable): d = 7.80–6.85 (m, 29H, Ph, Py–H4), 6.75 (d,
3J = 7.6 Hz, 2H, NCCH2Ph–H2/6), 6.45 (d, 3J = 7.6 Hz,
1H, Py–H3/5), [6.28 (d, 3J = 7.6 Hz, 1H, Py–H3/5)], 5.82 (s,
1H, Cp–H), [5.82 (s, 1H, Cp–H)], 5.54 (d, 3J = 7.3 Hz, 1H,
Py–H3/5), [5.54 (br s, 1H, Py–H3/5)], 5.38 (s, 1H, Cp–H),
[5.67 (s, 1H, Cp–H)], 4.96 (dt, 3J = 4.2 Hz, 3J = 10.8 Hz,
1H, OCH), 4.66 (br s, 1H, Cp–H), [4.66 (br s, 1H, Cp–H)],
4.54 (d, 2JP–H = 10.8 Hz, 1H, PyCHPPh2), [4.92 (d, 2JP–H

= 11.5 Hz, 1H, PyCHPPh2)], 3.94 (d, 2J = 18.6 Hz, 1H,
CHCN), [3.56 (d, 2J = 18.6 Hz, 1H, CHCN)], 3.88 (d,
2J = 18.6 Hz, 1H, CHCN), [2.97 (d, 2J = 18.6 Hz, 1H,
CHCN)], 3.68 (s, 1H, Cp–H), [3.76 (s, 1H, Cp–H)], 2.20–
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0.70 (m, 9H, Ment–H), 1.39 (s, 3H, CH3), [1.21 (s, 3H,
CH3)], 1.09 (s, 3H, CH3), [1.05 (s, 3H, CH3)], 1.05 (d,
3J = 6.6 Hz, 3H, CH3), 0.90 (d, 3J = 7.6 Hz, 3H, CH3),
[0.86 (d, 3J = 7.1 Hz, 6H, CH3)], 0.73 (d, 3J = 6.8 Hz, 3H,
CH3), [0.62 (d, 3J = 7.1 Hz, 3H, CH3)] ppm. 13C{1H}
NMR (100 MHz, CDCl3, 300 K, signals of the
(LMent,SC,SRu)-isomer given in brackets if distinguishable):
162.28 (s, Py–C), [162.35 (s, Py–C)], 152.69 (d, JC–P

= 7.9 Hz, P–Ar–C), 137.75 (s, Py–CH), [138.00 (s, Py–
CH)], 138.63–123.13 (m, Ar–C, Ar–CH, Py–CH, Py–C,
CN), 119.28 (s, Py–CH), [118.57 (s, Py–CH)], 109.94 (s,
Py–CH), [110.04 (s, Py–CH)], 90.46 (d, JC–P = 3.8 Hz,
Cp), [89.22 (br s, Cp)], 82.85 (d, JC–P = 2.3 Hz, Cp), 79.93
(d, JC–P = 7.6 Hz, Cp), 75.44 (d, JC–P = 19.0 Hz, P–CH),
[73.66 (d, JC–P = 25.2 Hz, P–CH)], 74.47 (s, Ment–CH),
[74.31 (s, Ment–CH)], 62.33 (s, Cp), [66.75 (br s, Cp)],
47.52 (s, Ment–CH), [47.47 (s, Ment–CH)], 40.96 (s,
Ment–CH2), [40.66 (s, Ment–CH2)], 38.12 (d, 2JC–P =
6.9 Hz, CpCMe2), [38.46 (d, 2JC–P = 7.6 Hz, CpCMe2)],
34.53 (s, Ment–CH2), [34.46 (s, Ment–CH2)], 31.74 (s,
Ment–CH), [31.17 (s, Ment–CH)], 29.66 (d, 3JC–P = 19.8
Hz, CpC Me2), 25.63 (s, PhCH2), [23.92 (s, PhCH2)], 26.36
(s, Ment–CH), [22.15 (s, Ment–CH)], 23.98 (s, Ment–
CH2), [23.82 (s, Ment–CH2)], 22.90 (s, Ment–CH), [21.92
(s, Ment–CH)], 22.37 (s, Ment–Me), [22.84 (s, Ment–Me)],
20.69 (s, Ment–Me), [20.96 (s, Ment–Me)], 16.83 (s, Ment–
Me), [17.22 (s, Ment–Me)] ppm. 31P{1H} NMR
(162 MHz, CDCl3, 300 K): (LMent,SC,RRu)-8: d = 70.0 (br
d, 2JP–P = 29.7 Hz, 1P), 48.4 (d, 2JP–P = 29.7 Hz, 1P),
�142.8 (septet, 1JP–F = 718.5 Hz, 1P) ppm; diastereomer
(LMent,SC,SRu)-8: d = 78.0 (br d, 2JP–P = 30.0 Hz, 1P),
49.4 (br d, 2JP–P = 30.0 Hz, 1P), �142.8 (septet, 1JP–F

= 718.5 Hz, 1P) ppm. ESI-MS (CH2Cl2, rel. int.): m/z =
1017 (M, 5), 900 (M–PhCH2CN, 100). C62H65F6N2OP3Ru
(1148.2): Calc. C, 64.08; H, 5.64; N, 2.41. Found: C,
63.71; H, 6.00; N, 2.47%.

3.1.5. (LMent,SC,RRu)/(LMent,SC,SRu)-Æ[Ammine{2-(2-
cyclopentadienyl-1-diphenylphosphanyl-2-methylprop-1-yl)-

6-[(1R,2S,5R)-menthoxy]pyridine}-

triphenylphosphane]ruthenium(II)æ-hexafluorophosphate

(LMent,SC,RRu)-9 and (LMent,SC,SRu)-9
A mixture (85:15) of (LMent,SC,RRu)-5 and

(LMent,SC,SRu)-5 (150 mg, 0.160 mmol) was dissolved in
CH2Cl2. To the solution was added NH4PF6 (330 mg,
1.01 mmol) and then stirred for 30 min at room tempera-
ture. To the suspension was added amine (1.00 mmol).
The mixture was stirred for 24 h and filtrated. The mother
liquor was evaporated in vacuo. The residue was
chromatographed on silica gel using EtOAc/ether (1:1,
v/v) as an eluent to give (LMent,SC,RRu)-9 and (LMent,
SC,SRu)-9 (57:43 ratio; 54% from piperidine; 63% from
morpholine). Mp. 153 �C. IR (KBr): m = 3356, 3283
(NH) cm�1. 1H NMR (400 MHz, CDCl3, 273 K, signals
of the (LMent,SC,RRu)-isomer given in brackets if distin-
guishable): d = 7.91–6.60 (m, 26H, Ph, Py–H4), 6.45 (d,
3J = 7.9 Hz, 1H, Py–H3/5), [6.43 (d, 3J = 7.9 Hz, 1H, Py–
H3/5)], 5.82 (br s, 1H, Py–H3/5), 5.62 (s, 1H, Cp–H), [5.39
(s, 1H, Cp–H)], 5.34 (s, 1H, Cp–H), [5.21 (s, 1H, Cp–H)],
4.97 (d, 2JP–H = 11.0 Hz, 1H, PCHPy), [4.23 (d, 2JP–H

= 13.4 Hz, 1H, PCHPy)], 4.76 (s, 1H, Cp–H), [5.06 (s,
1H, Cp–H)], 4.71 (m, 1H, OCH), [4.88 (dt, 3J = 4.3 Hz,
3J = 10.4 Hz, 1H, OCH)], 4.06 (s, 1H, Cp–H), [4.32 (s,
1H, Cp–H)], 2.34–0.80 (m, 12H, Ment–H, NH3), 1.25
(s, 3H, CH3), [1.20 (s, 3H, CH3)], 1.10 (s, 3H, CH3), [1.10
(s, 3H, CH3)], 0.90 (d, 3J = 6.7 Hz, 3H, CH3), [0.99 (d,
3J = 6.7 Hz, 3H, CH3)], 0.86 (d, 3J = 7.3 Hz, 3H, CH3),
[0.91 (d, 3J = 7.0 Hz, 3H, CH3)], 0.65 (d, 3J = 7.3 Hz,
3H, CH3), [0.74 (d, 3J = 6.7 Hz, 3H, CH3)] ppm. 13C{1H}
NMR (100 MHz, CDCl3, 300 K, signals of the
(LMent,SC,SRu)-isomer given in brackets if distinguishable):
162.38 (s, Py–C2), [162.49 (s, Py–C2)], 153.18 (d, JC–P

= 9.2 Hz, P–Ar–C), [153.28, d, JC–P = 7.6 Hz, P–Ar–C],
137.78 (s, Py–CH), [137.78 (s, Py–CH)], 136.75–122.41
(m, P–Ar–C, P–Ar–CH, Py–C, Py–CH), 118.47 (s, Py–
CH), [118.82 (s, Py–CH)], 110.04 (s, Py–CH), [110.10 (s,
Py–CH)], 87.79 (d, JC–P = 5.3 Hz, Cp), 82.31 (d, JC–P

= 6.1 Hz, Cp), 74.07 (s, Ment–CH), [75.16 (s, Ment–
CH)], 73.40 (d, JC–P = 21.3 Hz, P–CH), 68.33 (d, JC–P

= 10.7 Hz, Cp), 58.95 (s, Cp), [64.46 (br s, Cp)], 47.55 (s,
Ment–CH), 40.92 (s, Ment–CH2), [40.76 (s, Ment–CH2)],
37.96 (d, 2JC–P = 6.1 Hz, CpCMe2), [38.43 (d, 2JC–P

= 8.4 Hz, CpCMe2)], 34.53 (s, Ment–CH2), [34.47 (s,
Ment–CH2)], 31.63 (s, Ment–CH), [31.18 (s, Ment–CH)],
28.99 (d, 3JC–P = 18.3 Hz, CpCMe2), [29.62 (d, 3JC–P =
19.1 Hz, CpCMe2)], 26.47 (s, Ment–CH), [26.35 (s, Ment–
CH)], 24.01 (s, Ment–CH2), [23.77 (s, Ment–CH2)], 23.20
(s, Ment–CH), [21.90 (s, Ment–CH)], 22.24 (s, Ment–Me),
[23.73 (s, Ment–Me)], 20.67 (s, Ment–Me), [20.89 (s,
Ment–Me)], 17.02 (s, Ment–Me), [17.11 (s, Ment–Me)]
ppm. 31P{1H} NMR (162 MHz, CDCl3, 273 K):
(LMent,SC,RRu)-9: d = 76.5 (d, 2JP–P = 30.1 Hz, 1P), 51.5
(d, 2JP–P = 30.1 Hz, 1P), �143.2 (septet, 1JP–F =
713.6 Hz, 1P) ppm; (LMent,SC,SRu)-9: d = 79.1 (br s, 1P),
52.4 (br s, 1P), �143.2 (septet, 1JP�F = 713.6 Hz, 1P)
ppm. ESI-MS (CH2Cl2, rel. int.): m/z = 917 (M, 5), 900
(M�NH3, 100). C54H61F6N2OP3Ru (1062.1): Calc. C,
61.07; H, 5.79; N, 2.64. Found: C, 61.19; H, 5.61; N, 2.66%.

4. Supplementary material

Crystallographic data for (LMent,SC,RRu)-5 and
(LMent,SC,RRu)-8 have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication
No. CCDC-287095 and CCDC-289512. Copies of the data
can be obtained free of charge on application to CCDC, 12
Union Road, Cambridge CB 2 1EZ, UK, fax: (internet)
+44 (0) 1223 336 033, e-mail: deposit@ccdc.cam.ac.uk.
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